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AbstracL We develop a direct method by which we exactly derive a g e n d  dispersion relation 
for magnetostatic modes in an N-cell finite superlattice composed of WO different alternating 
magnetic layers. We also confirm mathematically the consistency condition for the existence of 
surface modes on a semi-infinite superlattice. We obtain some new analytical conclusions about 
surface modes. 

1. Introduction 

During the past decade, the rapid progress in such techniques as molecular beam epitaxy 
and metal-organic chemical vapour deposition has made possible the extensive investigation 
of various kinds of multilayers. Recently, magnetic multilayers have attracted significant 
attention because of their unique magnetic properties. The surface and interfaces in the 
layered system may profoundly influence the properties of the entire structure. Much 
of the most interesting physics occurring in the layered system is due to surface or 
interface effects. Some collective excitations in a layered structure are localized to the 
interfaces and surfaces, and thus make ideal probes for examining surface and interface 
conditions. Spin wave excitations in a periodic multilayered system, a superlattice, have 
been extensively studied for infinite and semi-infinite cases. Camley and co-workers dealt 
with the magnetic-non-magnetic superlattice in a parallel magnetization geometry where 
the saturation magnetization lay parallel to the layers (Camley et a1 1983). The study 
was extended to the case where the magnetization lies along the normal to the layers 
(Camley and Cottam 1987). Barnas treated the more general infinite and semi-infinite 
superlattices, which are composed of N different magnetic materials (Barnas 1988a. b, c). 
Recently, the calculations done earlier by Camley and Cottam were generalized to the case 
in which the magnetization is not confined to be either parallel or perpendicular to the layers 
0I.i ef a1 1994). There have also been some theoretical works (Albuquerque et al 1991, 
Barnas 1988a, b, c, Grunberg and Mika 1983, Johnson et a1 1985) on finite superlattices. 
The finite superlattices may be more interesting due to the fact that they have more surface 
effects than semi-infinite structures and because an actual sample made by experiment is a 
finite-sized smcture. What the earlier researchers were most concerned about are the unique 
surface effects in a finite structure and the approximation of a large finite superlattice by 
an infinite or a semi-infinite structure (Johnson et a1 1985). Experimentally, Schuller and 
Grimsditch (1985) observed the long-wavelength spin-wave collective excitations by using 
Brillouin light scattering techniques. A complete and de,.ailed review of this field was 
given by Camley and Stamps (1993), and non-reciprocal surface waves were summarized 
by Camley (1987). 
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Infinite superlattices and semi-infinite superlattices can be conveniently treated within a 
transfer-matrix formalism (Raj and Tilley 1989). By introducing a decay parameter fl  into 
the magnetic scalar potential, one can separately treat the bulk and surface modes according 
to whether f l  is an imaginary or complex parameter. A real surface mode corresponds to 
the case where the real part of ,9 is positive; furthermore, fl  must agree with the consistency 
requirement as indicated by Camley and Cottam (Camley and Cottam, 1987). In this paper, 
in order to treat a finite superlattice we develop a direct method by which we can exactly 
derive the dispersion relation for magnetostatic modes, including both surface and bulk 
modes, in a finite superlattice consisting of two different materials. Our method is different 
from the conventional transfer-matrix method because we do not assume a value for the 
decay parameter p. We deal with each magnetic layer as a magnetic film and then connect 
the magnetic scalar potential in each layer by employing boundary conditions at all interfaces 
and surfaces. The key problem here is how to solve the boundary conditions, which seem 
to be very complex and too numerous. In our method a very simple formalism has been 
obtained after some algebra. Comparing the spectra for different finite-sized superlattices to 
the spectra for a corresponding infinite or semi-infinite smcture, one can find many unique 
features of the finite structure and observe the trend of the changes in the spectra for a 
finite structure as the number of elementary units increases. The comparison is helpful 
when investigating how many layers are necessary before a superlattice can be adequately 
modelled by a semi-infinite or infinite structure. We find many remarkable differences in the 
long-wavelength region of the spectra, even for such a large system as a 50-cell structure. 

We also confirm mathematically the consistency condition for surface modes to exist 
on a semi-infinite superlattice, indicated by Camley and Cottam (1987). Some analytical 
conclusions about the surface modes have been made for some special magnetization 
geometries. 

In section 2, we discuss the condition for the existence of surface modes on a semi- 
infinite superlattice and give some analytical results. In section 3, we derive an exact solution 
for magnetostatic modes in an N-cell finite superlattice formed by alternating two different 
magnetic layers and give some numerical examples. Finally, some general conclusions are 
presented in section 4. 

2. Condition of surface modes 

We consider here the case where the wavelengths of spin waves are so long that the influence 
of short-range exchange interactions can be neglected but are short enough that 

( 2 7 l l l ) C  Zb w 

where h is the wavelength of the spin wave, OJ the frequency and c the speed of light in 
a vacuum. Under such conditions, the behaviour of the spin waves is governed by the 
magnetostatic form of the Maxwell equations 

V x H = O  (1) 
V .  ( H  + 4 x M )  = 0 (2) 

where the field H a n d  the magnetization M can be written as the sum of time-independent 
and timedependent components of the form 

(3) 

(4) 

H = Hi + he-"' 

M = MO i- me-'@'. 
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Here h and b = h + 47rm also obey the magnetostatic equations. For sufficiently 
long wavelengths, the dynamic magnetic properties of the system can be described by the 
constitutive relation 

m = X h  (5 )  

where x is the susceptibility tensor; x can be determined by solving the Bloch-equation of 
motion 

_-  - yM x H .  
dM 
dt 

Here y is the gyromagnetic ratio. 
We take the z axis of a Cartesian coordinate system to be along the normal to the 

surface of the semi-infinite superlattice, which occupies the half-space z > 0. The strwcture 
considered consists of two materials labelled by the indices 1 and 2, respectively. The 
elementary units, with len,gh L = dl + 4, are labelled by the integer n and the Outermost 
elementq unit corresponds ton  = 0. We restrict our discussion to the two cases where the 
saturation magnetization lies either along the x axis or along the z axis; then, in terms of 
the magnetic scalar potential @ defined by h = -V@, the magnetostatic equations reduce 
to 

Here pii are the components of the tensor of magnetic permeability, which is defined by 
p = I +4zx and is different for the two magnetization geometries. Following Camley and 
Cottam (19871, we assume a solution of the form of a plane-wave propagating parallel to 
the surface: 

@ = ,$(Z)ei(w+Y,wrr) (8) 

where 

Z G O  
n L  < z < n L + d l  

) n L + d l < z < ( n f l ) L  
(9) 

with 

2 q2 = 4,' + 4, 

and 

The terms qx and qy are the components of the wavevector along the x and y directions, 
respectively. The coefficients A+, B* and C will be determined by applying the boundary 
conditions. In order to guarantee that the solution we find is a true surface wave, p  must 
satisfy the inequality given by 

Re@) > 0. (1 1) 
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The usual electromagnetic boundary conditions are that the tangential h and normal 
b components are continuous across all the boundaries. In the geometry considered, the 
boundary conditions become that Q and b, = -xi pziaQ/axi are continuous at z = nL 
and z = nL + dl. The application of the boundary conditions results in 

with 

*f’” = *e (1.2) + i ( p )  (1 2) ) 
1 .24z  2x e +I%; 4s . 

Eliminating B+, B- and C from equation (12), one can obtain a set of three linear 
homogeneous equations in two unknowns, A+ and A-, as follows: 

(A?) - ~?1)(1 - @+rrzdi-ardi )A+ + (A!) - Af’)(1 - ePL-uldl-u2d2)A- = 0 

(if) - ).?))(I - eBL+aidi+di)A+ + (A!) - ~!))(1 - eBL-midi*d2)A- = 0 

. ( 1 3 ~ )  

(13b) 

(W (2.:) - q)A+ + (A- (1) - q)A- = 0 

with j3 a parameter. A system of linear homogeneous equations has a non-trivial solution 
only if the rank of the coefficient matrix is smaller than the number of unknowns. In the case 
under consideration, the number of unknowns is two, and so for a non-trivial solution the 
rank of the coefficient matrix must be one, which implies the determinants of the three 2 x 2 
submatrixes in the coefficient matrix all vanish. For a magnetic-non-magnetic semi-infinite 
superlattice, this condition becomes 

) (A?) - q ) ( ~ y )  +q)( l  - eBL+aidl-qd%)(l - eBL-aidl+d* 

- (A:’) + q ) ( ~ ( ‘ )  - q)( l  - ePL-di-q4)(1 - eBL+di+qdz) = 0 (144  

(A!) + q)(,Q) - q)( l  - eBL+adi+~di) - (A:] + q ) ( ~ s f )  - q)( l  - eBL-ui4+qdz) = 0 (14b) 

(Ay)  - q)(A!!’ - q )  sinh(orldl) = 0. ( 1 4 ~ )  

Here fl  should satisfy all three equations at the same time. According to Camley and 
Stamps (1993). equation (14c) has three possible cases: A:) - 4 = 0, A!) - q = 0 and 
q d l  = imn, where m = 0, h l ,  *2,. ‘ I .  Combining (14a) and ( I ~ c ) ,  we have 

(1) A+ - q = 0 j3L = *(,,d~ + qdz) 

A!)-q=O 

eldl = imn 

BL = * t (~d i  - qdz) 

j3L = *qd2 + i(2m + 1)a. 
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Similarly, combining (14b) and (14c), we obtain 

aidi + qdd A, ( 1 )  - q = O  j3L=-( 

0 j3L = a i l  - qdz 

aldl = imn j3L = -qd2 + i(2m + 1 ) ~ .  

Obviously, the three consistency solutions for j3, which simultaneously satisfy (14at(14c), 
are 

j3L = -( aid1 +&) 

j3L=aldl -qd2 

j3L = -qd2 + i(2m + 1)n. 

After ignoring a solution that does not represent a true surface mode due to Re(p) < 0, 
we only have the solution j3L = aldl - qd2 with A!) - q = 0. When a1 is real and 
uldl - qd2 > 0, this solution represents the type of surface modes which are composed of 
surface waves in each magnetic layer. Obviously, the other type of surface modes, which 
consists of bulk waves in each magnetic film, cannot exist on a magnetionon-magnetic 
semi-infinite superlattice due to the consistency requirement. Mathematically we confirm 
the conclusion made by Camley and Cottam (1987) and explain the differences between 
earlier researchers in conclusions about surface modes (Camley et al 1983, Camley and 
Cottam 1987, Shen and Li 1992, Camley and Stamps 1993). 

We now discuss the possibility of suiface waves existing on a semi-infinite superlattice 
composed of two arbitrary materials. We consider three special cases: (i) Ho parallel to 
the x direction and qx = 0; (ii) HO parallel to the x direction and qy = 0; (iii) HO parallel 
to the z direction. According to Wlleret et al (1989), in cases (i) and (ii) &.” = 1, 
P y y  (1.2) = f i z z  (1.2) = ~ 1 . 2 ,  xi:” = 0 and xi:” = x l . 2 .  while in case (iii) p$*) = 1, 
p:>’) = p:‘,.” = p1.2, and xi>” = xi:*) =. 0. Using these relations and combining 
(13b) and (13c), we have 

= ea2d2 [fsinh(uldl) + cosh(a~dt)l 

with 

RI(XI - X Z )  + PlI/fil for case (i) 
for cases (ii) and (iii) (ILI + f i 2 ) / [ f i I ( 1  +fi2)1 

and 

Obviously, the decay condition, Re@) > 0, for a surface mode to exist on a semi-infinite 
superlattice becomes f < 0 when p1.2 > 0. One can easily find that the condition cannot 
hold for cases (ii) and (iii) due to f z 0. Therefore the surface modes cannot exist in the 
two cases. This conclusion is different from earlier numerical results (Shen and Li 1992). 
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Figure 1. The two different geometries of B finite superlattice composed of oltemating layers 
of materials labelled by I and 2, respectively. The z axis is taken to be along the normal to the 
surface. The elementw units are indexed by n, as shown. In (a) the bottom layer is composed 
of material 1; in (b) the bottom layer is composed of material 2. 

3. Finite superlattices 

We now deal with the problem of magnetostatic modes in the finite superlattices formed by 
different alternating magnetic layers. In the case considered, there are two possible structures 
in which the outermost layers are either composed of the same material or composed of 
different materials, as shown in figures l(a) and (b), respectively. The finite superlattice, 
assumed to have a non-magnetic substrate, is confined in the region 0 4 z < N L  + dl for 
the first case and in the region 0 < z < (N + l ) L  for the second case, respectively. The 
first structure may be more interesting physically, because it has high symmetry. Instead of 
inuoducing the decay parameter p, we let @(z) in (8) be of the form 

z 4 0  
nL < z < nL +dl 
nL+dl  < z < ( n + I ) L  
z 2 N L + d i  

(15) 
A ~ + ) ~ u I ( z - ~ L )  + A:-)~-~I(Z-"L) 

@(z) = B;+)e"z-"L-d,) + ~(- )e=dz-d-d , )  I ~ ~ - d - N L - d l )  

where n = 0, 1, . . . , N - 1. For the first structure, applying the boundary conditions at 
interfaces z = nL + dl and z = (n + 1)L, we obtain 



Q' + R'/x 
Q + R x  

F ( x )  = 

we have 

where 

N factors 

Equation (21) is the implicit dispersion relation for the magnetostatic modes in a finite 
superlattice, the solutions of which give the dispersion relation for bulk and surface modes at 
the same time. Taking the Fe superlattice as an example, we try to investigate quantitatively 
the difference between a finite and an infinite superlattice in their spectra of spin-wave 
excitations. For simplicity, we consider a perpendicular magnetization geometry. In this 
situation, the non-vanishing components of the tensor of magnetic permeability are 

f i x 1  (1) = fig = 1 + (47rHiM0)[Hf - (w/y)2]- '  

where Hi = HO - 4nMo. The parameters appropriate for Fe are MO = 1.68KG. 
HO = 22KG, assuming d1/d2 = 0.5. Figures 2(u)4c) present the dispersion curves for 
three different finite-sized superlattices, with N = 10, 20, 50, respectively. Here, for 
simplicity, we only take 40 discrete values of qdl in numerical calculations, though they 
should be continuous. Using earlier researchers' results (Camley and Cottam 1987), we 
add the boundaries of the bulk bands for a corresponding infinite structure with the same 
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F i y r c  2. Frequency against dimensionless wavevedor 
qdl (dl held constant) for different finite-sized Fe 
superlattices. The p m e t e n  used are MO = 1.68KG. 
H(I = 22KG and dz/dl = 0.5. In (a) N = 10: in (b) 
N = 20: in (e) N = 50. 

parameters as these figures, so as to compare the finite superlattice with the infinite or 
semi-infinite structure. Unlike the infinite structure, the spectra for finite structures are 
characterized by discrete modes. The reason for this, of course, is that the periodicity 
is broken and Bloch’s theorem does not hold in the finite structure. As pointed out by 
earlier researchers (Camley and Stamps 1993), there are as many modes as magnetic layers. 
The structures in the spectra are obviously different for different finite-sized superlattices, 
particularly in the long-wavelength region. However, one finds the outlines of the spectra 
are very close to the boundaries of the bulk bands when the number of elementary units, N ,  
is larger than 20. This supports a conclusion made for other systems (Johnson et al 1985). 

There has been a discussion about how many layers are necessary before a superlattice 
can be adequately modelled by a semi-infinite or infinite structure. If the SO-cell superlattice 
can be considered a large enough system, one can avoid a detailed consideration of the 
surfaces by imposing periodic boundary conditions on the finite structure and subsequently 
pass to the limit in which the periodic volume becomes infinite (Callaway 1991). In this 
way, the dispersion relation is given by (Camley and Cottam 1987) 

cos(@) = cosh(or~dl) cosh(qdz) + &3/q + q/orl)sinh(orldl) sinh(qdz) 

where QL = 2 n m / N ,  with N = 50 and m = 0, 1,. . . ,49. Figure 3 presents the dispersion 
curves for the infinite smcture. A comparison of figure 2(c) with figure 3 shows some 
remarkable differences. 
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(i) There are 25 modes for the infinite structure formed by imposing periodic boundary 
conditions on the 5O-cell superlattice because of the degeneracy. But the real 50-cell 
structure has 50 modes. This implies that surface effects make the degeneracy disappear. 

(ii) The differences become small when qdl > 1. This means that, for the size 
considered, Bloch's theorem approximately holds in the short-wavelength region despite the 
non-existence of periodicity. However, it is obvious that the structures of the two spectra 
are very different from each other in the long-wavelength region. Therefore, N must be 
much larger than 50 so as to obtain a good approximation for these long-wavelength modes 
in the case considered. 

The spectrum of the finite superlattice will be changed if the outermost units are different 
from those inside the structure. When the top and bottom layers are symmetrically added, 
with the same additional thickness 6 (here 6/dl  = 0.25), surface modes will appear as 
shown in figure 4. The dispersion curves for the finite superlattice are very similar to those 
for a semi-infinite superlattice that has an additional thickness on the top layer (Camley and 
Cottam 1987), except that the spectrum for the finite structure is discrete. This reflects some 
similarities between the two structures in the aspects of symmetry and surface properties. 
Therefore changing the outermost units can be used to control the surface modes. 

0.5 ' I 
0 I 2 s d 

qd, 

Figure 3. Frequency against dimensionless wavevector 
qdl (dl held constant) for lhe corresponding infinite 
Fe superlattice formed by imposing periodic boundary 
conditions on a 50-cell Fe superlattice. Numerical 
parameters as in figure 2. 

Figure 4. Frequency against dimensionless wavevector 
qd, (dl held constant) for a 50-cell Fe superlattice with 
an additional thickness 6 @/dl  = 0.25) on the top and 
bottom layers of the Structure described in figure 16). 
Numerical parameters as in figure 2. 

In a more realistic case, the top and bottom layers are composed of different materials 
as described in figure I @ ) .  One can easily derive that the changes in boundary conditions 
require the right-hand side of (18) and the left-hand side of (21) are replaced by 

(2) - ~ ( 1 )  e-urdr - (A, (2) + q)(A!? - At))ea2d2 e2cndl - (A."+!?)@+ + ) 
(A?) + q ) ( A y )  - AY))e-'Zdt - ( A y )  + q) ( iF )  - ).:')&> 

while the other equations remain unchanged. It has been shown that this change 
in the bottom unit only causes small differences in the spectra when N z IO. 
Figure 5 displays a numerical example of this structure. The system considered is 
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Cdo,soMno.,oTeCdo,*9Mno.~ lTe, an antiferromagnetic-paramagnetic superlattice at liquid- 
helium temperatures (Villeret el ul 1989). The parameters used here are: (i) the sublattice 
saturation magnetization MA') = 0.2KG (ii) for the paramagnetic layers Mf) = 0.07 KG; 
(iii) the exchange field HE = 200KG; (iv) the anisotropy field HA = 30KG; (v) the applied 
magnetic field HO = 60 KG, again being perpendicular to the layers; (vi) the number of the 
elementary units N = 50; and (vii) the ratio of the thickness dl/d2 = 2. From figure 5 one 
can see that there are three frequency regions in which bulk bands exist. This agrees with 
the earlier work on a corresponding infinite structure (Villeret el al 1989). The fact that no 
surface modes appear in the numerical results could be a demonstration of the conclusion, 
made in section 2, that no surface modes can exist in the case where magnetization is 
perpendicular to the layers. 

173.5 F 

53.9 F I 

53.5 
0.0 2.0 4.0 

qdr 

Figure 5. Frequency against dimensionless wavevector 
qdl(d1 held constant) for a 50-cell CdMnTe superlat- 
fice. Parameters used are Ho = 60KG. HE = ZOOKG. 
HA = 30 KG, Mt l  = 0.2 KG, Mf) = 0.07 KG and 
d2 fd i  = 0.5. 

4. Summary 

We have discussed the consistency condition and the decay condition for surface modes 
to exist on a semi-infinite superlattice. Through an analytical discussion, for perpendicular 
and parallel magnetization geometries, we arrived at the following analytical conclusions. 

(i) On a semi-infinite magnetic-non-magnetic superlattice, those surface modes that are 
composed of bulk waves from each magnetic film cannot exist because of restrictions from 
the consistency condition. 

(ii) On a semi-infinite superlattice consisting of two arbitrary materials, those surface 
modes that are composed of surface waves on each magnetic layer cannot exist in the cases 
with Ho parallel to the z axis, and HO parallel to the x axis with qy = 0. 

Without assuming a decay parameter p, we developed a direct method by which one 
can exactly derive the dispersion relation for magnetostatic modes in an arbitrary N -  
cell superlattice composed of two materials. The numerical examples of these dispersion 
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relations for different finite-sized superlattices show very interesting discrete structures in the 
small qdl region. When N > 20 the outlines of the spectra are very close to the boundary of 
the bulk bands for a corresponding infinite structure. These facts are consistent with earlier 
results about plasmons in finite superlattices (Johnson er al 1985). We also discussed the 
approximation of a large finite-size superlattice by an infinite structure through imposing 
periodic boundary conditions on a 50-cell structure. Comparing the two spectra one can 
clearly see where Bloch's theorem breaks down as an infinite superlattice changes into a 
finite superlattice. We find that the surface effects are still significant for the long-wavelength 
modes even in a 50-cell superlattice. This fact, that the deviation from periodicity has a 
stronger influence on long-wavelength modes than on short-wavelength modes, seems to be 
consistent with what one expects for the size effecr 
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